Issue: Vol. 1 (2025)
Published: 2025-12-31
Section: Articles

Investigating the use of artificial intelligence supported tools by preservice middle school mathematics teachers in the numbers and quantities theme

Merve Çınar, Aykut Bulut

Technology and artificial intelligence (AI) have increasingly influenced teaching and learning processes. With their integration into education, AI-based tools have begun to alleviate instructional challenges faced by teachers and preservice teachers, including lesson planning, activity design, assessment, and mathematical problem posing. One of the central themes of the middle school mathematics curriculum, Numbers and Quantities, has long been emphasized in mathematics education research due to its conceptual complexity and instructional significance. The use of AI tools within this theme is therefore expected to support instruction and instructional design. Accordingly, this study aimed to examine the use of two widely adopted AI tools—ChatGPT and Gemini—by preservice middle school mathematics teachers. The study focused on how these tools were used in relation to the Grade 6 learning outcome defined in the Turkish Century Education Model: solving real-life problems that require the four basic operations involving fractions, decimals, and percentages. A qualitative case study design was employed with 45 fourth-year preservice teachers enrolled in an elementary mathematics teacher education program at a public university. Data were collected through problem-posing and problem-solving tasks and analyzed using descriptive analysis. The findings showed that most problems constructed independently by preservice teachers did not fully meet the specified learning outcome, whereas a lower proportion of misaligned problems was observed in those generated using ChatGPT and Gemini. However, preservice teachers experienced difficulties in writing effective prompts, and AI-generated problems frequently relied on repetitive contexts, outdated numerical values, or incomplete data. These results emphasize the need for critical evaluation and validation of AI-generated outputs for instructional use.

Keywords: Artificial intelligence tools, ChatGPT, Gemini, Preservice mathematics teachers, Numbers and quantities

How to Cite

Çınar, M., & Bulut, A. (2025). Investigating the use of artificial intelligence supported tools by preservice middle school mathematics teachers in the numbers and quantities theme. Journal of Educational Innovations & Practices, 1, Article e5. https://doi.org/10.65933/zq3xp497

Alshahrani, A. (2023). The impact of ChatGPT on blended learning: Current trends and future research directions. International Journal of Data and Network Science, 7(4), 2029–2040. DOI: https://doi.org/10.5267/j.ijdns.2023.6.010

Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500 DOI: https://doi.org/10.61969/jai.1337500

Baki, A., Yalçınkaya, H. A., Özpınar, İ., & Uzun, S. Ç. (2009). İlköğretim matematik öğretmenleri ve öğretmen adaylarının öğretim teknolojilerine bakışlarının karşılaştırılması. Turkish Journal of Computer and Mathematics Education, 1(1), 65–83.

Barros, C. (2024). ChatGPT in the resolution of a math exam: Results obtained in Portuguese and in English language. In International Conference on Lifelong Education and Leadership for All (ICLEL 2023) (pp. 37–47). Atlantis Press. DOI: https://doi.org/10.2991/978-94-6463-380-1_5

Bayazit, İ., & Dönmez, E. S. (2017). Öğretmen adaylarının problem kurma becerilerinin orantısal akıl yürütme gerektiren durumlar bağlamında incelenmesi. Turkish Journal of Computer and Mathematics Education, 8(1), 130–160. DOI: https://doi.org/10.16949/turkbilmat.303759

Baykul, Y. (2009). İlkokulda matematik öğretimi. Pegem Yayıncılık.

Bishop, J. M. (2021). Artificial intelligence is stupid and causal reasoning will not fix it. Frontiers in Psychology, 11, Article 513474. https://doi.org/10.3389/fpsyg.2020.513474 DOI: https://doi.org/10.3389/fpsyg.2020.513474

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., … Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://doi.org/10.48550/arXiv.2005.14165

Castro, R. A. G., Cachicatari, N. A. M., Aste, W. M. B., & Medina, M. P. L. (2024). Exploration of ChatGPT in basic education: Advantages, disadvantages, and its impact on school tasks. Contemporary Educational Technology, 16(3), Article ep511. DOI: https://doi.org/10.30935/cedtech/14615

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. DOI: https://doi.org/10.1109/ACCESS.2020.2988510

Chen, J. J., & Lin, J. C. (2024). Artificial intelligence as a double-edged sword: Wielding the POWER principles to maximize its positive effects and minimize its negative effects. Contemporary Issues in Early Childhood, 25(1), 146–153. DOI: https://doi.org/10.1177/14639491231169813

Creswell, J. W. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. SAGE Publications.

Çilingir, E., & Akdemir-Tirsi, A. (2025). Yapay zekâ tabanlı eğitim planları: Bir öğrenme çıktısı üzerinden MEB Maarif Modeli ile karşılaştırmalı bir inceleme (Sözlü bildiri). In II. İstanbul Bilim ve Sanat Merkezleri Çocuk Kongresi (pp. 93–97). İstanbul İl Millî Eğitim Müdürlüğü.

Dasari, D., Hendriyanto, A., Sahara, S., Suryadi, D., Muhaimin, L. H., Chao, T., & Fitriana, L. (2024). ChatGPT in didactical tetrahedron, does it make an exception? A case study in mathematics teaching and learning. Frontiers in Education, 8, Article 1295413. DOI: https://doi.org/10.3389/feduc.2023.1295413

English, L. D. (2020). Teaching and learning through mathematical problem posing: Commentary. International Journal of Educational Research, 102, Article 101451. DOI: https://doi.org/10.1016/j.ijer.2019.06.014

Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460–474. DOI: https://doi.org/10.1080/14703297.2023.2195846

Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), Article 692. DOI: https://doi.org/10.3390/educsci13070692

Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), Article 100089. DOI: https://doi.org/10.1016/j.tbench.2023.100089

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. The Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf

Işık, A., & Kar, T. (2011). Öğretmen adaylarının sözel ve görsel temsillere yönelik kurdukları problemlerin analizi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 30(30), 39–49.

Kehoe, F. (2023). Leveraging generative AI tools for enhanced lesson planning in initial teacher education at post-primary. Irish Journal of Technology Enhanced Learning, 7(2), 172–182. https://doi.org/10.22554/ijtel.v7i2.124 DOI: https://doi.org/10.22554/ijtel.v7i2.124

Kılıç, C. (2015). Analyzing pre-service primary teachers’ fraction knowledge structures through problem posing. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1603–1619. DOI: https://doi.org/10.12973/eurasia.2015.1425a

Lee, I., & Perret, B. (2022, June). Preparing high school teachers to integrate AI methods into STEM classrooms. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 11, pp. 12783–12791). DOI: https://doi.org/10.1609/aaai.v36i11.21557

Lee, G. G., & Zhai, X. (2024). Using ChatGPT for science learning: A study on pre-service teachers’ lesson planning. IEEE Transactions on Learning Technologies, 17, 1643–1660. https://doi.org/10.1109/TLT.2024.3401457 DOI: https://doi.org/10.1109/TLT.2024.3401457

Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 1–15. DOI: https://doi.org/10.3390/educsci13040410

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26–29. DOI: https://doi.org/10.1108/LHTN-01-2023-0009

Millî Eğitim Bakanlığı. (2024). Ortaokul matematik dersi öğretim programı. MEB.

National Council of Teachers of Mathematics. (2008). Principles and standards for school mathematics. Author.

OpenAI. (2024). Introducing ChatGPT-4.0. https://openai.com

Osana, H. P., & Royea, D. A. (2011). Obstacles and challenges in preservice teachers’ explorations with fractions: A view from a small-scale intervention study. The Journal of Mathematical Behavior, 30(4), 333–352. https://doi.org/10.1016/j.jmathb.2011.07.001 DOI: https://doi.org/10.1016/j.jmathb.2011.07.001

Osman, S. A., & Ahmed, Z. E. (2024). Navigating AI integration: Case studies and best practices in educational transformation. In Z. Ahmed, A. Hassan, & R. Saeed (Eds.), AI-enhanced teaching methods (pp. 240–267). IGI Global. DOI: https://doi.org/10.4018/979-8-3693-2728-9.ch011

Othman, A. (2023). Demystifying GPT and GPT-3: How they can support innovators to develop new digital accessibility solutions and assistive technologies. Nafath, 8(22). DOI: https://doi.org/10.54455/MCN2204

Özdemir, B. G., Bayraktar, R., & Yılmaz, M. (2017). Sınıf ve matematik öğretmenlerinin kavram yanılgılarına ilişkin açıklamaları. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 284–305.

Özdemir-Yıldız. (2019). Matematik öğretmen adaylarının problem kurma becerilerinin incelenmesi ve problem kurma hakkındaki görüşlerinin belirlenmesi (Yüksek lisans tezi). Gazi Üniversitesi.

Patton, M. Q. (2015). Qualitative evaluation and research methods. SAGE Publications.

Pilavcı, S. (2024). Yapay zekâ gelişimi ve GPT. In E. Şengel (Ed.), Teoriden uygulamaya yapay zekânın temelleri: Geçmiş, gelecek ve güçlü promptlar (pp. 1–8). Serüven Yayınevi. https://dspace.mudanya.edu.tr/server/api/core/bitstreams/f5a65c61-c958-4930-b424-7e61e0f7f8c4/content

Richard, P. R., Vlez, M. P., & Van Vaerenbergh, S. (2022). Mathematics education in the age of artificial intelligence: How artificial intelligence can serve mathematical human learning. Springer Nature. DOI: https://doi.org/10.1007/978-3-030-86909-0

Roose, K. (2022). The brilliance and weirdness of ChatGPT. The New York Times. https://hawksites.newpaltz.edu/fdc/files/2023/02/The_Brilliance_And_Weirdness_O.pdf

Samala, A. D., Zhai, X., Aoki, K., Bojić, L., & Zikic, S. (2024). An in-depth review of ChatGPT’s pros and cons for learning and teaching in education. International Journal of Interactive Mobile Technologies, 18(2), 96–117. DOI: https://doi.org/10.3991/ijim.v18i02.46509

Sebullen, M. T. (2023). Lesson planning challenges of pre-service teachers. Cognizance Journal of Multidisciplinary Studies, 3(5), 19–29. DOI: https://doi.org/10.47760/cognizance.2023.v03i05.003

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 29(3), 75–80. DOI: https://doi.org/10.1007/s11858-997-0003-x

Şengel, E. (2024). Teoriden uygulamaya yapay zekânın temelleri: Geçmiş, gelecek ve güçlü promptlar. Serüven Yayınevi.

Şimşek, N. (2025). Integration of ChatGPT in mathematical story-focused 5E lesson planning: Teachers and pre-service teachers’ interactions with ChatGPT. Education and Information Technologies, 1–72. https://doi.org/10.1007/s10639-024-13258-x DOI: https://doi.org/10.1007/s10639-024-13258-x

Temur, S. (2024). Yapay zekânın eğitim sistemine entegrasyonunun potansiyel faydaları. Batı Anadolu Eğitim Bilimleri Dergisi, 15(3), 2621–2656. https://doi.org/10.51460/baebd.1541524 DOI: https://doi.org/10.51460/baebd.1541524

Wardat, Y., Tashtoush, M. A., AlAli, R., & Jarrah, A. M. (2023). ChatGPT: A revolutionary tool for teaching and learning mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 19(7), Article em2286. DOI: https://doi.org/10.29333/ejmste/13272

Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96, 101–118. https://doi.org/10.1007/s10649-017-9760-9 DOI: https://doi.org/10.1007/s10649-017-9760-9

YEĞİTEK. (2025). Yapay zekâ ve eğitim: Öğretmenler için uygulamalı prompt mühendisliği ve üretken araçlarla yenilikçi öğrenme stratejileri (M. Canlı, Gen. Yay. Koord.; S. H. Eral, Ed.). Millî Eğitim Bakanlığı. https://yegitek.meb.gov.tr/meb_iys_dosyalar/2025_07/01154003_yz_promptrehberi.pdf

Yeniçeri, Ü., & Kenan, A. (2025). Öğretmen adaylarının yapay zekâya yönelik tutum ve kaygılarının çeşitli değişkenler açısından betimsel analizi. Ege Eğitim Dergisi, 26(2), 226–245. DOI: https://doi.org/10.12984/egeefd.1625648

Yenilmez, K., & Kocaoğlu, T. (2010). Beşinci sınıf öğrencilerinin kesir problemlerinde yaptıkları hatalar ve kavram yanılgıları. Kastamonu Eğitim Dergisi, 14, 129–146.

Yıldız, Z. (2014). Matematikte problem kurma çalışmalarının öğretmen adaylarının problem kurma becerilerine ve üstbilişsel farkındalık düzeylerine etkisi (Doktora tezi). Marmara Üniversitesi.

Yılmaz, A. (2023). Fen bilimleri eğitiminde dijital uygulamalar, yapay zekâ ve akıllı yazılımlar: Tehditler ve fırsatlar. In A. Akpınar (Ed.), Matematik ve fen bilimleri üzerine araştırmalar II (pp. 1–20). Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub165.c676

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). SAGE Publications.

Zhai, X. (2022). ChatGPT user experience: Implications for education. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4312418 DOI: https://doi.org/10.2139/ssrn.4312418

Zhou, K., Yang, J., Loy, C. C., & Liu, Z. (2022). Learning to prompt for vision-language models. International Journal of Computer Vision, 130(9), 2337–2348. https://doi.org/10.1109/CVPR52688.2022.01631 DOI: https://doi.org/10.1007/s11263-022-01653-1

Similar Articles

You may also start an advanced similarity search for this article.